skip to main content


Search for: All records

Creators/Authors contains: "Li, Chuanhao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Chaudhuri, Kamalika ; Jegelka, Stefanie ; Song, Le ; Szepesvari, Csaba ; Niu, Gang ; Sabato, Sivan (Ed.)
    In real-world recommendation problems, especially those with a formidably large item space, users have to gradually learn to estimate the utility of any fresh recommendations from their experience about previously consumed items. This in turn affects their interaction dynamics with the system and can invalidate previous algorithms built on the omniscient user assumption. In this paper, we formalize a model to capture such ā€learning usersā€ and design an efficient system-side learning solution, coined Noise-Robust Active Ellipsoid Search (RAES), to confront the challenges brought by the non-stationary feedback from such a learning user. Interestingly, we prove that the regret of RAES deteriorates gracefully as the convergence rate of user learning becomes worse, until reaching linear regret when the userā€™s learning fails to converge. Experiments on synthetic datasets demonstrate the strength of RAES for such a contemporaneous system-user learning problem. Our study provides a novel perspective on modeling the feedback loop in recommendation problems. 
    more » « less
  2. We propose a new problem setting to study the sequential interactions between a recommender system and a user. Instead of assuming the user is omniscient, static, and explicit, as the classical practice does, we sketch a more realistic user behavior model, under which the user: 1) rejects recommendations if they are clearly worse than others; 2) updates her utility estimation based on rewards from her accepted recommendations; 3) withholds realized rewards from the system. We formulate the interactions between the system and such an explorative user in a K-armed bandit framework and study the problem of learning the optimal recommendation on the system side. We show that efficient system learning is still possible but is more difficult. In particular, the system can identify the best arm with probability at least 1-delta within O(1/delta) interactions, and we prove this is tight. Our finding contrasts the result for the problem of best arm identification with fixed confidence, in which the best arm can be identified with probability 1-delta within O(log(1/delta)) interactions. This gap illustrates the inevitable cost the system has to pay when it learns from an explorative user's revealed preferences on its recommendations rather than from the realized rewards. 
    more » « less
  3. Camps-Valls, Gustau ; Ruiz, Francisco J. ; Valera, Isabel (Ed.)
    Linear contextual bandit is a popular online learning problem. It has been mostly studied in centralized learning settings. With the surging demand of large-scale decentralized model learning, e.g., federated learning, how to retain regret minimization while reducing communication cost becomes an open challenge. In this paper, we study linear contextual bandit in a federated learning setting. We propose a general framework with asynchronous model update and communication for a collection of homogeneous clients and heterogeneous clients, respectively. Rigorous theoretical analysis is provided about the regret and communication cost under this distributed learning framework; and extensive empirical evaluations demonstrate the effectiveness of our solution. 
    more » « less
  4. null (Ed.)
    Collaborative bandit learning, i.e., bandit algorithms that utilize collaborative filtering techniques to improve sample efficiency in online interactive recommendation, has attracted much research attention as it enjoys the best of both worlds. However, all existing collaborative bandit learning solutions impose a stationary assumption about the environment, i.e., both user preferences and the dependency among users are assumed static over time. Unfortunately, this assumption hardly holds in practice due to users' ever-changing interests and dependency relations, which inevitably costs a recommender system sub-optimal performance in practice. In this work, we develop a collaborative dynamic bandit solution to handle a changing environment for recommendation. We explicitly model the underlying changes in both user preferences and their dependency relation as a stochastic process. Individual user's preference is modeled by a mixture of globally shared contextual bandit models with a Dirichlet process prior. Collaboration among users is thus achieved via Bayesian inference over the global bandit models. To balance exploitation and exploration during the interactions, Thompson sampling is used for both model selection and arm selection. Our solution is proved to maintain a standard $\tilde O(\sqrt{T})$ Bayesian regret in this challenging environment. Extensive empirical evaluations on both synthetic and real-world datasets further confirmed the necessity of modeling a changing environment and our algorithm's practical advantages against several state-of-the-art online learning solutions. 
    more » « less